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Surface Area Term in Myhill-Piper Equation
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Myhill-Piper equation [ Surface area—effect on dissolution rate,
antacids, Myhill-Piper equation [] Dissolution, antacids—surface
area term, Myhill-Piper equation

Sir:

A paper by Myhill and Piper (1) is frequently quoted
in antacid work. In their treatment, using their nomen-
clature, r(#) = amount of antacid present in the stomach
at time ¢, x = emptying rate constant of excess antacid,
s = rate per unit time at which antacid is neutralized
by acid secreted by the stomach, and r = ‘‘starting
index” or time after administration of antacid when
exponential emptying rate commences.

This leads to the differential equation:

dr(nfdt = —kr(t) — s (Eq. 1)

which can readily be integrated. This equation, although
useful as an initial equation, does not hold in general,
since it assumes a constant dissolution rate, s, of the
antacid independent of time. The overall dissolution
rate would be a function of surface area, which changes
with time, and would be related to [#(H)]”. It further-
more depends on pH (which also changes with time),
and Notari and Sokoloski (2) showed that a cube root
law ensues when proper treatment is applied. Denoting
the pH (or time) dependence of s, ¢(¢), changes Eq. 1 to:

dr(njdr = —xr(f) — qe([r(D)])*/» (Eq. 2)

which is sufficiently complicated to prohibit solution in
closed form.

Of course, ¢(f) and r(r) may change at different rates
with time. If the stomach emptying time is long, then pH
[and ¢(7)] may change fairly rapidly with small amounts
of dissolved antacid [i.e., in this situation, r(¢) does not
change much], so that under these circumstances ¢(?)
would change much more rapidly than #(s). In such a
case, the circumstances are simplified sufficiently to
allow Eq. 2 to be solved; it now can be put in the form:

dr(njdt = —xr(2) — s(1) (Eq. 3)

where s(r) = qo(D)[r(1)]* ~ constant-¢(r). When the
dissolving medium has constant volume, then [as may be
implied from the work of Notari and Sokoloski (2)] the
volume ¥ of hydrochloric acid consumed at time 7 can be
expressed by:

Vo=V = Vae—wt (Eq. 9

where infinity denotes final state and where w is a func-
tion of the original surface area. Therefore, with the
assumption made:

(1) = Vowe—wt = qe—wt (Eq. 5)

and Eq. 3 now takes the form:

dr(dfdt + xr() + ae—wt = 0 (Eq. 6)

The solution to Eq. 6 is obtained via the integration
factor e***7 and is:
M= —--%—e-w + Ce—n (Eq. 7)
K — W
where C would depend on initial conditions (e.g., on 7).
The point to be stressed is that the surface area is
related to [7(#)]”/* and that s in Eq. 1 is a function of this
(and of pH); therefore, surface area must be a part of
the resulting equations.
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Effect of Microsomal Activation on
Interaction between
Isophosphamide and DNA

Keyphrases [] Isophosphamide interaction with DNA—effect of
microsomal activation [] DNA interaction with isophosphamide—
effect of microsomal activation T Microsomal activation—effect
on isophosphamide interaction with DNA

Sir:

We previously showed that the activation to alkylat-
ing materials of isophosphamide [3-(2-chloroethyl)-
2-(2-chloroethyl)aminotetrahydro-1,3,2-oxazaphospho-
rine-2-oxide, I], an antineoplastic analog of cyclo-
phosphamide, is mediated through the NADPH-de-
pendent liver microsomal oxidase system (1) and is
increased by pretreatment of animals with phenobarbital
(2). We have now investigated the effect of this activa-
tion on DNA synthesis and on the reaction between 1
and DNA in vitro in order to clarify the effect of this
activation on antitumor activity.

1 NSC-109724; Ifosfamide, Mead Johnson.
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